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Schrodinger equation I. The one-dimensional problem 
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Liverpool L69 3BX, UK 
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Abstract. A method is presented for solving the one-dimensional Schrodinger equation in 
which the potential is approximated by a step function. This effective Hamiltonian is then 
solved exactly by a continued fraction technique which enables the convergence properties 
to be studied. The method is particularly suitable for the solution of scattering problems 
for which upper and lower bounds can be obtained for the phase shifts. 

1. Introduction 

The approximation discussed here is the simple one of replacing a smooth potential by 
a step function potential. This technique has been used before in a number of fields 
such as obtaining Green functions (Hennell 1968) but also by Canosa and Gomes de 
Oliveira (1970) for solving bound-state problems in the one-dimensional Schrodinger 
equation. The method presented here is devised principally for solving the scattering 
problem for which upper and lower bounds can be obtained for tan d;. 

2. The method 

The one-dimensional Schrijdinger equation for the scattering of two particles (bound- 
states will be discussed later) is 

d2 
- $ ( r ) + k 2 $ ( r ) -  V(r)$(r) = O 
dr2 

where k is the relative momentum of the two particles. For simplicity, only the I = 0 
case will be discussed although the method can cope quite easily with I # 0. The boun- 
dary conditions are then 

lim $ ( r )  = A(sin kr + tan 6 cos kr )  
r + m  

* (O)  = 0, 

6 being the phase shift. 
The approximation is to replace the potential U(r)  by the step potentials 

U ( r )  z V ( r )  = V, ,  r /h  E [n- 1, n] (n = 1,2, . . . ,  N )  (2) 
where h is the step length and for the moment take V ,  = U[(n  -+)/I] ie the value of U(r)  
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at the midpoint of the nth region. Then in the nth region with the approximation (2) 
the equation (1) becomes 

for which the exact solution is 

$,(r) = A,  sin p,r + B, cos p,r (4) 

with p,’ = k 2  - V ,  > 0 (for p,’ < 0 the sinh and cosh solutions may be taken). The 
constants A,  and B, may be obtained from the constants A,- and B,- of the (n  - 1)th 
region by requiring continuity of the solutions and their first derivatives at the region 
interfaces. The result of this is 

with 

a, = cotp,-lR-Kcotp,R 

b, = -(1+ K cot p,R cot pn- lR) 

C, = - (K+  cotp,Rcotp,-,R) 

d ,= ( -Kco tp , - ,R+  cotp,R) 

K = P,/P,- 1 

R = nh. 

In the first region the boundary condition at the origin is 1)~(0) = 0 from which 
D, = 0. Thus the continued fraction (5) can be summed outwards to any region quite 
simply. If the sequence (2) is now terminated at the Nth region, ie the potential being 
zero for r 2 N h ,  then 

D N +  1 = tan 6 R , h  

where 6R,h is the exact scattering phase shift for the effective Hamiltonian. 
The method then is to choose a step length h and, starting from the origin, step 

outwards until convergence with respect to N of tan 6R,h is obtained to a given accuracy. 
The technique is then repeated for a smaller h, out to the same point R as before and this 
process of reducing h is repeated until tan 6R,h has converged with respect to changes in h. 

In figure 1 the central curve shows results for the potential V(r) = e-‘*. This shows 
that as h + 0 and with R = 5.0 (for four significant figures), tan 6 converges towards the 
‘exact’ solution (which in this case was obtained both by variational and finite difference 
routines). 

In appendix 1 it is shown that if V, = V [ ( n - f ) h ]  then the method is of order h2  
ie the error term decreases as the square of the step length. This result is confirmed in 
figure 4 where a graph is drawn of Ig(tan 6R.h - tan 6,) against lg h (6, is the exact 
phase shift for the given potential V(r) ie 6, = dR,J. It may be seen that the result is a 
straight line of slope 2.0 approximately. 

Since (5) is a continued fraction, the problems of convergence may be studied from 
this viewpoint, particularly since a considerable amount of work has been expended 
on the convergence problem (Wall 1948). A formal analysis of convergence on this basis 



A n  ejjective Hamiltonian method 173 

0'3t \ 

IO M 50 70 
N 

Figure 1. V ( r )  = e-"; the central curve gives the results for tan 6 against h for the midpoint 
method whilst the outer two curves are the upper and lower bounds. The broken line gives 
the exact solution. kZ = 0.01. R = 5.0. 

will be presented elsewhere. The class of potentials for which convergence can be proved 
is, as yet, rather restrictive; however in practice the method converges to the correct 
solutions for a number of realistic nucleon-nucleon potentials. 

3. Bounds for 6 

In any region, the point at which U ( r )  is evaluated is arbitrary. Intuitively, it would seem 
that evaluating U ( r )  at the midpoint is likely to prove the best approximation. In the 
case of a wholly attractive potential, if V ,  is evaluated so that 

V ,  = max) U(r)l, ( n -  1)h < r < nh 

an effective Hamiltonian can be constructed which is everywhere more attractive than 
U ( r )  and the tan dR,h for this effective Hamiltonian will be an upper bound on [tan 61 for 
U ( r )  (see appendix 2). In general it would be necessary only to evaluate U(r )  at the step 
length to obtain Vrax with the exception of turning points, for which it is necessary to 
obtain the turning point itself and in the region encompassing the turning point, U(r )  
should be evaluated there. 

Similarly lower bounds can be obtained by taking V, = mini U(r)l, ( n  - 1)h Q r < ah. 
In this case there is no problem with the turning points and V,  will be given by V ,  = min 
of { U [ ( n -  l)h], U(nh) j .  

In figure 2 upper and lower bounds are shown for U ( r )  = e-pr/pr,p = 111.58, 
whilst in figure 1 the bounds are given for V(r )  = e-". Although the Yukawa potential 
has a singularity at the origin, this does not affect either the midpoint approximation or 
the lower bounds. For the upper bounds, however, VI is infinite which forces = 0 
so that the iteration technique starts from region 2 with D, = 0. In appendix 1 it is shown 
that with the effective potential evaluated at the region boundaries the method is of 
order h, hence the bounds are significantly slower to converge than the midpoint method, 
a point which is clearly seen in figures 1 and 2. 

For the case of potentials which oscillate in sign, it is possible to obtain upper 
bounds (say) by taking the effective step potentials greater than U(r)  for the attractive 
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Figure 2. V ( r )  = e-”/pr, fi  = 1/1.58; the central curve gives the results for tan 6 against h 
for the midpoint method whilst the outer two curves are the upper and lower bounds. The 
broken line gives the exact solution. k 2  = 12.0, R = 16.0. 

components and less than U(r )  for the negative components, and vice versa for the lower 
bounds. This is illustrated by figure 3 where bounds are presented for the potential 

e-4x e - 7x 

V(r) = - 10*463-- 1650.6-+6484.2- 
e-’ 
X X X 

(this is the ‘ S o  nucleon-nucleon potential of Reid). Clearly the bounds are converging 
to the exact result. 

So far in this discussion the choice of step length has not been considered. Since it 
is not necessary to use a constant step length it is possible to use a number of schemes 
for estimating an optimum value. For instance, initially a large h may be chosen and 

I b ‘  

1 4 .  

I Z -  

Figure 3. V ( r )  is the Reid ‘So nucleon-nucleon potential; the central curve gives the results 
for tan 6 against h for the midpoint rule whilst the outer curves are the upper and lower 
bounds. The broken line gives the exact solution. k 2  = 12.0, R = 16.0. 
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D,(h) evaluated, then the step is reduced to h/2 and the D,(h/2) obtained with this step 
length should agree with D,(h) to some specified accuracy. If this is not true then the 
step should be reduced to h/4 and the process repeated until a suitable step length is 
obtained. This step length can then be used for the next 10 (say) steps and then another 
search for h (preferably larger) can be made and so on. The effect of this is to obtain 
the required accuracy with just one run on a computer. In the calculations presented 
here the step length has been kept fixed. 

4. Bound-states 

The case of bound-states has been treated by Canosa and Gomes de Oliveira (hereafter 
referred to as CG) who have used the technique of approximating V(r )  by a step function. 
Their method is to solve the system of equations obtained by matching at  the boundaries 
and obtain the A,, and B,, explicitly. At the same time they obtain the eigenvalues. For 
the case of bound-states it would appear that the method of CG has more to offer than 
the method presented here. It is clear that the approximations to V ( r )  presented in 5 3 
will also give upper and lower bounds for the eigenvalues when used in the method of 
CG, a point not discussed by them. Also, the proof that the bound-state method is of 
order h2 follows by carrying over the proof given in appendix I to the Rayleigh-Ritz 
formula. (CG were unable to produce such a proof.) 

A further point is the question of round-off error. In their paper CG emphasize 
that their method (without resorting to some clever tricks) suffers from severe round-off 
errors for rapidly varying or deep potentials (terms such as cosh 100-sinh 100 occur- 
ring). It is worth noting that the method outlined in this paper does not appear to have 
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Figure 4. Ig(tan 6, -tan 6J against h. The slope is 2.0, showing that the midpoint method 
is B(h2). 
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this disadvantage, successive runs with the Reid potential have shown agreement to at 
least eight significant figures between computer runs in single (1 1 significant figures) 
and double (23 significant figures) precision. 

5. Conclusion 

The method presented here arose from attempts to solve integral equations by step 
potential approximations and a further paper will be presented demonstrating this 
technique. The method has also been demonstrated for the case of coupled ODE’S in 
particular for the case of the coupled triplet states in neutron-proton scattering. 

It is also intuitively obvious that although the method outlined above is only an h2 
method, an improvement can be obtained [O(h3)] if instead of approximating with square 
wells a trapezium approximation is used. Higher-order methods also appear possible. 
The important point here is that rigorous bounds can still be obtained, these cannot be 
obtained by finite difference methods. 

The method is extremely simple to implement and if only phase shifts are required, 
the storage requirements are negligible, making the method attractive to users of small 
computers. Since the step length is optional it is possible to construct algorithms which 
reduce the number of steps considerably. 
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Appendix 1 

The variational estimate for the phase shift is 

(Al.l)  

where IC/, is a trial function, 6, is the corresponding trial phase shift and H = T+ V(r) ,  
Tbeing the kinetic energy. For $!,take the exact solution $n for the effective Hamiltonian. 
This satisfies the equation 

(T+ v,-E)t,bn = 0, (n -  l)h < r ,< nh. 

Then 

( T + U - E ) $ ,  = [T+ K - E + ( U -  yJ]$n 
= ( U -  K)t,bn 

from which (A1 .l) becomes : 
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Transforming to y = r - (n - 1)h gives 

tan 6 = tan 6, + J: +,,(y) [W - v,I$,,w dy. 
n =  1 

Consider an arbitrary point y = ah, then $,(y) and V(y) may be expanded about this 
point so that 

Z2 

Z2  

2 

$,M = $,(ah) + z $ 3 4  + y $ W )  + . . . 

V(y) = U(ah)+zU'(ah)+--"(ah)+ . . . 

where 
z = y - a h  and -2ah < z < h(1 -a).  

Transforming the integral and inserting the expansion for $,(y) and V(y) gives, after 
integration and collecting up the terms in powers of h : 

J; $ n W  [ W Y )  - V,l$n(Y)  dy 

= U(ah)  - K] + h2( 1 - 2a) [$,(ah)U(ah)$~(ch) + $,(ah)$L(ah)U(ah)] 
+ / I 3 ( .  . . )+  . . . 

From this expression it can be seen that if V ,  is chosen to be the value of V(r)  at any 
arbitrary point ie V ,  = U [ ( n  - 1 + a)h],  then the first term of this expression vanishes. 
The second term vanishes only when a = $ ie if V ,  = V[(n- i )h] .  Thus the local trun- 
cation error for tan 6 is O(h2) for V ,  evaluated at an arbitrary point and O(h3) for the special 
case of the midpoint rule. 

Since there are N such regions, the global error estimate will be O(h) and O(h2) for the 
two cases ( N  = RmaX/h). This analysis shows that the midpoint method has the smallest 
error estimate f3(h2) whilst both the upper and lower bound methods will be O(h). 

Appendix 2 

Consider the variational estimate and error term for the phase shift ie 

tan6,  = tan6,+ Som $,(H,-E)$,dr+ JOm €(HI-E)cdr 

where, H ,  = T+ V,, $ = $ ,+e  is the exact solution and $, is a trial function. Now let 
V, = V, + U ,  then 

tan 6, = tan 6, + JOm $,(H2 - E)$, dr + JOm c (H2  - E ) €  dr 

= tan 6, + (1; $,u(r)$, dr+ JOm cv(r)c dr) . 

Hence, for ~ ( r )  > 0 for all r,  tan 6, will be an upper bound on tan 6, . Similarly, if ~ ( r )  < 0 
for all I ,  then tan 6, will be a lower bound on tan 6, .  
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